Integrating Geometric and Textural Features for Facial Emotion Classification Using SVM Frameworks
نویسندگان
چکیده
In this paper, we present a fast facial emotion classification system that relies on the concatenation of geometric and texture-based features. For classification, we propose to leverage the binary classification capabilities of a Support Vector Machine classifier to a hierarchical graph-based architecture that allows multi-class classification. We evaluate our classification results by calculating the emotion-wise classification accuracies and execution time of the hierarchical SVM classifier. A comparison between the overall accuracies of geometric, texture-based and concatenated features clearly indicates the performance enhancement achieved with concatenated features. Our experiments also demonstrate the effectiveness of our approach for developing efficient and robust real-time facial expression recognition frameworks.
منابع مشابه
A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملBody Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine
Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...
متن کاملMultimodal Emotion Recognition Integrating Affective Speech with Facial Expression
In recent years, emotion recognition has attracted extensive interest in signal processing, artificial intelligence and pattern recognition due to its potential applications to human-computer-interaction (HCI). Most previously published works in the field of emotion recognition devote to performing emotion recognition by using either affective speech or facial expression. However, Affective spe...
متن کاملIntegrating Textural and Spectral Features to Classify Silicate-Bearing Rocks Using Landsat 8 Data
Texture as a measure of spatial features has been useful as supplementary information to improve image classification in many areas of research fields. This study focuses on assessing the ability of different textural vectors and their combinations to aid spectral features in the classification of silicate rocks. Texture images were calculated from Landsat 8 imagery using a fractal dimension me...
متن کاملHuman Age Estimation via Geometric and Textural Features
Aging progress of a person is influenced by many factors such as genetics, health, lifestyle, and even weather conditions. Therefore human age estimation from a face image is a challenging problem. Aging causes significant variations in facial shape and texture across years. In order to construct a general age classifier, shape and texture information of human face should be used together. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016